Nested for loop, data dependency [ OpenMP ]
Nested for loop, data dependency [ OpenMP ]
I have a matrix solver (BiCCG) which is being used to solve set of algebraic equations arising from a 3 dimensional computational domain. I have tried to parallelise it using OpenMP but struggling with performance issues. On inspecting the code using Intel Advisor, it is evident that almost 80% of the solution time goes in the solver out of which there is one function which accounts for 50% of the solution time. Digging even deeper it is found that 5 loops out of 6 loops are performing terribly with no automatic vectorization since they suffer from data dependencies. What I do see is that there is a dependency (for eg in loop 3 ) because there i th iteration is using i-1 iteration's values.
How to change the design of the parallelisation such that it can be the most efficient with this algorithm ( rather that changing the algorithm altogether). Whether specifying #pragma omp simd safelen(1)
would help.
#pragma omp simd safelen(1)
The loops are as follows ( all loops except loop 5 are not automatically vectorised and are the sole bottlenecks of the function )
# pragma omp parallel num_threads(NTt) default(none) private(i,j,k, mythread, dummy) shared(STA,res_sparse_s,COEFF,p_sparse_s, ap_sparse_s,h_sparse_s,RLL, pipi_sparse, normres_sparse, riri_sparse,riri_sparse2,noemer_sparse, nx, ny, nz, nv, PeriodicBoundaryX, PeriodicBoundaryY, PeriodicBoundaryZ)
{
mythread = omp_get_thread_num();//0
// loop 1
#pragma omp for reduction(+:pipi_sparse)
for (i=1; i<=nx; i++) for (j=1; j<=ny; j++) for (k=1; k<=nz; k++)
{
dummy = COEFF[i][j][k][6] * p_sparse_s[i][j][k];
if (PeriodicBoundaryX && i == 1) dummy += COEFF[i][j][k][0] * p_sparse_s[nx ][j][k];
else dummy += COEFF[i][j][k][0] * p_sparse_s[i-1][j][k];
if (PeriodicBoundaryX && i == nx) dummy += COEFF[i][j][k][1] * p_sparse_s[1 ][j][k];
else dummy += COEFF[i][j][k][1] * p_sparse_s[i+1][j][k];
if (PeriodicBoundaryY && j == 1) dummy += COEFF[i][j][k][2] * p_sparse_s[i][ny ][k];
else dummy += COEFF[i][j][k][2] * p_sparse_s[i][j-1][k];
if (PeriodicBoundaryY && j == ny) dummy += COEFF[i][j][k][3] * p_sparse_s[i][ 1][k];
else dummy += COEFF[i][j][k][3] * p_sparse_s[i][j+1][k];
if (PeriodicBoundaryZ && k == 1) dummy += COEFF[i][j][k][4] * p_sparse_s[i][j][nz ];
else dummy += COEFF[i][j][k][4] * p_sparse_s[i][j][k-1];
if (PeriodicBoundaryZ && k == nz) dummy += COEFF[i][j][k][5] * p_sparse_s[i][j][ 1];
else dummy += COEFF[i][j][k][5] * p_sparse_s[i][j][k+1];
ap_sparse_s[i][j][k] = dummy;
pipi_sparse += p_sparse_s[i][j][k] * ap_sparse_s[i][j][k];
}
// loop 2
#pragma omp for reduction(+:normres_sparse)
for (i=1; i<=nx; i++) for (j=1; j<=ny; j++) for (k=1; k<=nz; k++)
{
STA[i][j][k] += (riri_sparse / pipi_sparse) * p_sparse_s[i][j][k];
res_sparse_s[i][j][k] -= (riri_sparse / pipi_sparse) * ap_sparse_s[i][j][k];
normres_sparse += (res_sparse_s[i][j][k] * res_sparse_s[i][j][k])/ nv;// need to take square root separately
}
// loop 3
// FORWARD
#pragma omp for schedule(static, nx/NTt)
for (i=1; i<=nx; i++) for (j=1; j<=ny; j++) for (k=1; k<=nz; k++)
{
dummy = res_sparse_s[i][j][k];
dummy -= COEFF[i][j][k][7] * RLL[i-1][j][k];
if (PeriodicBoundaryX && i==nx)dummy -= COEFF[i][j][k][8] * RLL[1 ][j][k];
dummy -= COEFF[i][j][k][2] * RLL[i][j-1][k];
if (PeriodicBoundaryY && j==ny) dummy -= COEFF[i][j][k][3] * RLL[i][1 ][k];
dummy -= COEFF[i][j][k][4] * RLL[i][j][k-1];
if (PeriodicBoundaryZ && k==nz) dummy -= COEFF[i][j][k][5] * RLL[i][j][1 ];
RLL[i][j][k] = dummy / h_sparse_s[i][j][k];
}
// loop 4
// BACKWARD
#pragma omp for schedule(static, nx/NTt)
for (i=nx; i>=1;i--) for (j=ny; j>=1;j--) for (k=nz; k>=1;k--)
{
dummy = RLL[i][j][k]*h_sparse_s[i][j][k];
if (PeriodicBoundaryX && i==1) dummy -= COEFF[i][j][k][7] * RLL[nx ][j][k];
dummy -= COEFF[i][j][k][8] * RLL[i+1][j][k];
if (PeriodicBoundaryY && j==1) dummy -= COEFF[i][j][k][2] * RLL[i][ny ][k];
dummy -= COEFF[i][j][k][3] * RLL[i][j+1][k];
if (PeriodicBoundaryZ && k==1) dummy -= COEFF[i][j][k][4] * RLL[i][j][nz ];
dummy -= COEFF[i][j][k][5] * RLL[i][j][k+1];
RLL[i][j][k] = dummy / h_sparse_s[i][j][k];
}
// loop 5
#pragma omp for reduction(+:riri_sparse2)
for (i=1; i<=nx; i++) for (j=1; j<=ny; j++) for (k=1; k<=nz; k++)
{
riri_sparse2 += res_sparse_s[i][j][k] * RLL[i][j][k];
}
// loop 6
#pragma omp for
for (i=1; i<=nx; i++) for (j=1; j<=ny; j++) for (k=1; k<=nz; k++)
{
p_sparse_s[i][j][k] = RLL[i][j][k] + (riri_sparse2 / noemer_sparse) * p_sparse_s[i][j][k];
}
}
noemer_sparse = riri_sparse2;
riri_sparse = riri_sparse2;
return;
}
By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.