PandasDataframe to_datetime error

Multi tool use
Multi tool use
The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP


PandasDataframe to_datetime error



I have got the following indices on a dataframe:


data extracted Index(['2014-06-30 00:00:00.0', '2014-07-07 00:00:00.0',
'2014-08-11 00:00:00.0', '2014-08-18 00:00:00.0',
'2014-08-25 00:00:00.0', '2014-09-08 00:00:00.0',
'2014-09-22 00:00:00.0', '2014-09-29 00:00:00.0',
'2014-10-06 00:00:00.0', '2014-10-27 00:00:00.0',
'2014-11-24 00:00:00.0', '2014-12-15 00:00:00.0',
'2014-12-29 00:00:00.0', '2015-01-05 00:00:00.0',
'2015-01-19 00:00:00.0', '2015-01-26 00:00:00.0',
'2015-02-02 00:00:00.0', '2015-02-16 00:00:00.0',
'2015-02-23 00:00:00.0', '2015-04-13 00:00:00.0',
'2015-04-20 00:00:00.0', '2015-05-04 00:00:00.0',
'2015-05-25 00:00:00.0', '2015-06-01 00:00:00.0',
'2015-06-15 00:00:00.0', '2015-06-22 00:00:00.0',
'2015-06-29 00:00:00.0', '2015-07-13 00:00:00.0',
'2015-07-20 00:00:00.0', '2015-08-17 00:00:00.0',
'2015-08-24 00:00:00.0', '2015-08-31 00:00:00.0',
'2015-09-07 00:00:00.0', '2015-10-05 00:00:00.0',
'2015-10-12 00:00:00.0', '2015-10-19 00:00:00.0',
'2015-11-09 00:00:00.0', '2015-11-16 00:00:00.0',
'2015-11-30 00:00:00.0', '2016-01-18 00:00:00.0',
'2016-02-01 00:00:00.0', '2016-02-15 00:00:00.0',
'2016-02-29 00:00:00.0', '2016-03-14 00:00:00.0',
'2016-04-04 00:00:00.0', '2016-04-11 00:00:00.0',
'2016-04-25 00:00:00.0', '2016-05-16 00:00:00.0',
'2016-05-30 00:00:00.0', '2016-06-20 00:00:00.0',
'2016-06-27 00:00:00.0', '2016-07-18 00:00:00.0',
'2016-08-01 00:00:00.0', '2016-08-15 00:00:00.0',
'2016-08-22 00:00:00.0', '2016-09-12 00:00:00.0',
'2016-10-03 00:00:00.0', '2016-11-07 00:00:00.0',
'2016-11-14 00:00:00.0', '2016-11-21 00:00:00.0',
'2016-12-05 00:00:00.0', '2016-12-19 00:00:00.0', 'DATE'],
dtype='object', name='DATE')



I want to do a weekly resampling on monday on this dataframe indices, so i need to convert them to a datetime index:


data = pd.read_csv('statistic.csv',
parse_dates=True, index_col=['DATE'], low_memory=False)
data[['QUANTITY']] = data[['QUANTITY']].apply(pd.to_numeric, errors='coerce')
data_extracted = data.groupby(['DATE','ARTICLENO'])
['QUANTITY'].sum().unstack()
data_extracted = data_extracted.fillna(value=np.nan)
data_extracted.index = pd.to_datetime(data_extracted.index)



When i try to convert the index like above, i get an error:


ValueError: Unknown string format



I think it is the last entry ('DATE'). How can i remove this?
data_extracted.index[:-1]?
How to convert to a weekly series? I know the .resample('W-MON') but read about some bugs and unexpected behaviour. Additionally, my data is not in regular distance, there is data every monday but not every seven days.


data_extracted.index[:-1]


.resample('W-MON')




1 Answer
1



You can use:


data_extracted.index = pd.to_datetime(data_extracted.index.str[:-2], errors='coerce')






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

pBSscpf3i,S,WkMuaXBvVgpplTZzp3twF5tzuhj3Uept4 uplpcLzx
XKcyVBssuU0vW2QyGAdZrKIgcE040YSF92bHFpCqucwFTP,1tolr pcwQ 2qN4L IXde05

Popular posts from this blog

Makefile test if variable is not empty

Visual Studio Code: How to configure includePath for better IntelliSense results

Will Oldham